SHIMADZU

AMICUS Sample and Analyser Geometry

Microscopic Examination

EPMA

Electron Probe Microscope SEM + WDX + CL

Electron Probe Micro-Analyzer

- Imaging down to3nm Resolution
- Elemental mapping resolution down to a 0.1µm
- Elemental Range Be to U
- Light element detection down to 10 ppm.

Comparison between WDS & EDS

WDS (Wavelength Dispersive Spectrometer)

EDS (Energy Dispersive Spectrometer)

Advantages for WDS

(1)Higher resolution (brings precise identification)

(2) Higher Signal/Noise ratio (Good for lower quantity)

③Never saturate under big current condition (Can analyze from 100% to very small quantity)

Electron Probe Micro-Analyzer

Electron Probe Micro-Analyzer

Observation GUI

Beam Condition-

Sample stage control

Sample Stage movement by mouse

Centering by double clicking

Sample movement by drag & drop

Sample movement by joystick

Mouse operation

Focusing

Auto Functions

Electron Probe Micro-Analyzer

EPMA 1720 mapping - 500x500 μm²

Trace mapping results

Trace mapping OFF

BEI

Fe

С

Qualitative Analysis by WDS

Debut of "the Grand EPMA"

Debut of "the Grand EPMA"

Refined stylish form !

The latest model of the full-faced-mask which only Shimadzu adopted in the world. The solid and novel design appropriate for The high-end model brings necessary influence for EPMA including shield and temperature control as well as seemliness.

and

Shimadzu EPMA-8050G is an energy saving design!

Our cut consumption electricity more than 30% while being a superlative degree product giving the world's best performance ! (Comparison with EPMA-1720 series)

Shimadzu announces eco-friendly EPMA with a person by prominent operability and energy saving design.

The high-end model in pursuit of the beauty of the image

New electronic optical system & vibration insulation mechanism & Magnetic shield deployment

The secondary-electron image resolution of 3 nm (30 kV accelerating voltage) is the highest level for an EPMA system.

Comparison of SEM image EPMA-8050G VS. EPMA-1720H EPMA-8050G EPMA-1720H

Image resolving power : 3 nm

Image resolving power : 5 nm

Image Resolution

Comparison of Electron Gun Beam Characteristics (10 kV accelerating voltage)

🕀 SHIMADZU

Ultra High Sensitivity Mapping

The neodymium magnet contributes to energy saving and the downsizing of the product by a strong magnetic field. However, it is dysprosium that is added to raise heat resistance because there is a fault that the neodymium magnet is vulnerable to heat. But most of dysprosium depend on the import from China. Therefore I can plan reduction of dysprosium by reducing alloy powder before baking a magnet, and hardening it conventionally, and optimizing the manufacture process so that it is thin, and an interface (neodymium aspect) surrounds it around a crystal particle uniformly. A characteristic (coercive force) evaluation was carried out conventionally, but, by these data, was able to confirm the neodymium aspect of the crystal interface visually for the first time.

7

Specifications (EPMA-8050G)

, , , , , , , , , , , , , , , , , , , ,	
Electron Source	Schottky emitter
Secondary-Electron Image Resolution	3 nm (30 kV accelerating voltage)
Analysis Conditions for Secondary-Electron	(10 kV accelerating voltage) 20 nm (10 nA beam current) / 50 nm
Image Resolution	(100 nA beam current) / 150 nm (1 µA beam current)
Accelerating Voltage	0.5 k∨ to 30 k∨ (in 0.1 k∨ increments. At 5 k∨ or less, can be set in
	10 V units.)
Beam Current	0.2 nA to 3 μA (30 kV accelerating voltage)
Beam Current Stability	±0.3 %/h
	(Beam current: 50 nA, accelerating voltage: 10 kV)
Magnification	40× to 400,000×
Back-Scattered Electron Detector	4-block, semiconductor detector
Objective Aperture	Selection not required
Vacuum Level	Analysis Chamber: 1.0×10^{-3} Pa max.
	Electron Gun Chamber: 3.5×10^{-7} Pa max.
Evacuation Pump	Turbo molecular pumps: One unit for main evacuation; one unit for
	preliminary evacuation
	Rotary pumps: One unit for main evacuation; one unit for
	preliminary evacuation
	Ion pumps: Two units for the electron gun chamber; one unit for the
	intermediate chamber
Vacuum Detection	Penning gauge, Pirani gauge, and ion gauge
Automated Functions	Automatic evacuation (main chamber evacuation, shut-down,
	sample loading chamber evacuation), safety operations via error
	detection
PC	PC/AT compatible; main memory 8 GB or more; HDD 1 TB or more
Display	23-inch touch panel LCD (Full HD, 1,920 pixels × 1,080 pixels),
	two monitors
OS	Windows 7

Topography Examination

Scanning Probe Microscope AFM + LFM+KFM + STM+MFM+FMSPM

Imaging of Interaction

Sample Surface

Signals: Atomic Force (AFM)

Phase

Force Modulation

Current

Magnetic Force (MFM)

Surface Potential (KFM)

Lateral Force (LFM)

Scanning Probe Microscopy

SPM-9700

Function SPM 9700

SPM Application

- Observation of various sample such as semiconductor, thin film, powder and bio samples.
- Shape measurement, Step measurement, Micro roughness measurement
- Physical properties measurement, Electric and Magnetic measurement, Dynamic measurement

Function

Particle Analysis Software

Particle or hole shapes are extracted from image

The features of individual particles is determined.

Statistic Processing Classification of particles

Features : 29types (Radius, Height, Surface Area, Area, Volume, etc)

SPM - 8000FM

High Resolution Scanning Probe Microscope SPM-8000FM

High Resolution Topography in Air

Poly diacetylene single crystal

The side chains on the topmost surface

Physical Properties Measurements

Surface Potential Measurement in Gas

Contact Potential Deference Distribution in Gas

Ryohei Kokawa, et al., Chemistry - An Asian Journal, 7, 1251-1255 (2012).

High Resolution Observation in Solution

High Resolution Topography in Water

Muscovite mica

Cleavage plane immersed in water

Molecular Resolution Observation of Soluble Protein Crystals

The rectangle represents a surface unit cell with the arrow indicating the c-axis.

Nagashima et al., JVST B 28 (2010) C4C11

Molecular resolution image observed in a saturated solution

SHIMADZU

Beyond the Helix Pitch: Direct Visualization of Native DNA in Aqueous Solution

10 nm

в

3 nm

4 nm

Antibody Observation reported in Japanese newspaper and TV

20 nm

🕀 SHIMADZU

Hydration / Solvation structure measurement

Water Structure at Interfaces

Nano Search Microscope OLS4500

From millimeter to nanometer size observation in one.

🕀 SHIMADZU

Nano-Search Microscope

Optical Microscope: ×100~×2000

Laser Scanning Microscope (LSM) Magnification : ×100~×14000

Atomic Force Microscope (AFM) Magnification : × 1000~ × 1000000

Hybrid Microscope

Coaxial Object lens and AFM Tip

From millimeter to nanometer size observation in one.

Never miss the destination. LSM $\leftarrow \rightarrow$ AFM

In Air No Coating

From mm to nm size observation in one

- Object lens and AFM Tip is coaxial
- SPM Tip Position is strictly inside in 100X Objective Sight.

Wafer (Mag.: 200x~1,000,000x)

<u>A mark of Micro Vickers</u>

The change in height that built on both sides of the crack can be measured.

Observation of Collagen End

A thinner fiber can observe at the collagen end.

Courtesy of Dr. Akira Monkawa, NIMS

Material Characterisation Tools

Elemental Analysis AA AA+GF ICPS ICPMS EDX XRF EPMA XPS **Compound Analysis**

Material Characterisation Tools

Structural Analysis XRD FTIR SALD DTG TGA XPS Imaging

Nanoserach

FMSPM

Material Characterisation Tools

Failure Analysis Servo hydraulic machines Universal Testing Machines Hardness Testers X-Ray Inspection EPMA FTIR-Microscope **SHIMADZU**

Shimadzu Provides ALL

🕀 SHIMADZU

THANK YOU

insdibusily submodely